
Core	Spring	4.2	Certification	Mock	Exam	

Question	

Container	
	
Question	1		

Given	the	following	Spring	configuration	file,	what	is	the	correct	answer:	

 <bean class="com.spring.service.MyServiceImpl">
 <property name="repository" ref="jpaDao"/>
 </bean>

 <bean class="com.spring.repository.JpaDao"/>

1. The	first	declared	bean	MyServiceImpl	is	missing	an	id	must	be	named	myService	

2. The	second	declared	bean	JpaDao	is	missing	an	id	must	be	named	jpaDao	

3. Answers	1	and	2	are	both	rights	

4. Answers	1	and	2	are	both	wrong	

Question	2	

Given	the	Spring	configuration	file,	which	are	the	correct	statements?	

<bean class="com.spring.service.BankServiceImpl"
 p:bankName="NationalBank">
</bean> 	

1. The	p	namespace	has	to	be	declared	

2. Bean	id	is	bankServiceImpl	

3. The	BankServiceImpl	references	a	NationalBank	bean	

4. NationalBank	is	a	scalar	value	

Question	3	

What	the	name	of	the	bean	defined	in	the	following	configuration	class?	Select	a	single	answer.	

@Configuration
public class ApplicationConfig {

 @Autowired
 private DataSource dataSource;

 @Bean
 ClientRepository clientRepository() {
 ClientRepository accountRepository = new JpaClientRepository();
 accountRepository.setDataSource(dataSource);
 return accountRepository;

 }

}

1. JpaClientRepository	

2. jpaClientRepository	

3. clientRepository	

4. Two	beans	are	defined:	a	data	souce	and	a	repository	

	

Question	4		

How	could	you	externalize	constants	from	a	Spring	configuration	file	or	a	Spring	annotation	into	a	

.properties	file?		Select	one	or	more	answers	

1. By	using	the	<util:constant	/>	tag	

2. By	declaring	the	ConstantPlaceholderConfigurer	bean	post	processor	

3. By	using	the	<context:property-placeholder	/>	tag	

4. By	using	the	c:	namespace	

	
Question	5	

What	statement	is	not	correct	in	live	environment?	Select	a	unique	answer.	

1. Constuctor	and	properties	autowiring	in	the	same	bean	are	not	compatible	

2. A	bean	should	have	a	default	or	a	no-args	constructor	

3. The	<constructor-arg>	tag	could	take	type,	name	and	index	to	reduce	ambiguity	

4. None	of	the	above	

5. All	of	the	above	

Question	6	

What	are	the	right	affirmations	about	the	@PostConstruct,	@Resource	and	the	@PreDestroy	

annotations?	

1. Those	annotations	are	specified	in	the	JSR-250	

2. The	Spring	Framework	embedded	those	annotations	

3. The	<context:component-scan>	tag	enable	them	

4. The	<context:annotation-config	>	tag	enable	them	

5. Declaring	the	CommonAnnotationBeanPostProcessor	enable	them	

	

Question	7	

What	is/are	typically	case(s)	where	you	usually	need	to	manually	instantiated	an	ApplicationContext?	

1. In	a	web	application	

2. In	an	integration	test	running	with	the	SpringJUnit4ClassRunner	

3. In	a	standalone	application	started	with	a	main	method	

4. None	of	the	above	

	

Question	8	

Select	the	right	statement	about	referring	a	Spring	configuration	file	inside	the	package	
com.example.myapp	in	the	below	example?	
ApplicationContext context = new
ClassPathXmlApplicationContext("classpath:/com.example.myapp.config.xml");	

1. The	classpath:	prefix	could	be	omitted	

2. Package	name	using	the	dot	character	is	not	well	formatted		

3. The	slash	character	preceding	com.example	could	be	omit	

4. All	of	the	above	

5. None	of	the	above	

	

Question	9		

How	to	auto-inject	into	a	field	a	Spring	bean	by	its	name?	Select	one	or	more	answer	choices.	

1. With	the	name	attribute	of	the	@Autowired	annotation	

2. By	using	the	single	@Qualifier	annotation	

3. By	using	both	the	@Autowired	and	the	@Qualifier	Spring	annotations	

4. By	using	the	@Autowired	annotation	and	naming	the	field	with	the	bean	name	

Question	10	

What	are	the	main	advantages	of	using	interfaces	when	designing	business	services?	Select	one	or	

more	answer	choices.	

1. Mocking	or	stubbing	the	service	

2. Be	able	to	use	the	Spring	auto-injection	

3. Can	do	dependency	checking	

4. Loosely	coupled	code	

Question	11	

Select	one	or	many	correct	answers	about	Spring	bean	life	cycle.	

1. The	method	annotated	with	@PostConstruct	is	called	after	bean	instantiation	and	before	

properties	setting	of	the	bean	

2. The	method	@PreDestroy	of	a	prototype	bean	is	called	when	the	bean	is	garbage	collected	

3. The	init()	method	declared	in	the	init-method	attribute	of	a	bean	is	called	before	the	

afterPropertiesSet	callback	method	of	the	InitializingBean	interface	

4. The	method	annotated	with	@PostConstruct	is	called	before	the	afterPropertiesSet	callback	

method	of	the	InitializingBean	interface	

Question	12	

Given	the	following	configuration	class,	what	are	the	correct	affirmations?	Select	one	or	more	

answers.	

public class ApplicationConfig {

 private DataSource dataSource;

 @Autowired
 public ApplicationConfig(DataSource dataSource) {
 this.dataSource = dataSource;
 }

 @Bean(name="clientRepository")
 ClientRepository jpaClientRepository() {
 return new JpaClientRepository();
 }
}

1. @Configuration	annotation	is	missing	

2. Default	or	no-arg	constructor	is	missing	

3. @Bean	name	is	ambiguous	

4. @Bean	scope	is	prototype	

	

Question	13	

What	are	the	features	of	the	XML	<context:namespace?	Select	one	or	many	answers.	

1. @Transactional	annotation	scanning	

2. @Aspect	annotation	detection	enabling	

3. @Autowired	annotation	enabling	

4. @Component	annotation	scanning	

Test	
	

Question	14	

Select	one	or	more	correct	statements	about	developing	integration	test	with	Spring	support.	

1. A	new	Spring	context	is	created	for	each	test	class	

2. To	get	a	reference	on	the	bean	you	want	to	test,	you	have	to	call	the	getBean()	method	of	

the	Spring	context	

3. Spring	context	configuration	could	be	inherited	from	the	super	class	

4. The	Spring	context	configuration	file	has	to	be	provided	to	the	@ContextConfiguration	

annotation		

Question	15	

What	are	the	main	advantage(s)	for	using	Spring	when	writing	integration	tests?			

1. Reuse	Spring	configuration	files	of	the	application	

2. Create	mock	or	stub	

3. Be	able	to	use	the	rollback	after	the	test	pattern	

4. Use	dependency	injection	

Question	16	

What	are	the	main	advantage(s)	for	using	Spring	when	writing	unit	tests?			

1. Reuse	Spring	configuration	files	of	the	application	

2. Use	dependency	injection	

3. Provide	some	mocks	for	servlet	classes	

4. All	of	the	above	

5. None	of	the	above	

Question	17	

What	is	right	about	the	Spring	test	module?	

1. It	provides	an	abstraction	layer	for	the	main	open	source	mock	frameworks	

2. Provides	the	@Mock	annotation	

3. It	dynamically	generates	mock	objects		

4. All	of	the	above	

5. None	of	the	above	

Question	18	

Select	correct	statement(s)	about	transactional	support	of	the	Spring	test	module.	

1. Transaction	manager	could	be	set	within	the	@TransactionConfiguration	annotation	

2. Method	annotated	with	@Before	is	executed	outside	of	the	test’s	transaction	

3. Spring	test	may	rollback	the	transaction	of	a	service	configured	with	the	REQUIRES_NEW	

propagation	

4. The	transaction	of	a	method	annotated	with	the	@Rollback	annotation	with	its	default	

values	is	rolled	back	after	the	method	has	completed		

AOP	
	
Question	19	

Considering	2	classes	AccountServiceImpl	and	ClientServiceImpl.	Any	of	these	2	classes	inherits	from	

each	other.		What	is	the	result	of	the	following	pointcut	expression?	

					execution(*	*..AccountServiceImpl.update(..))		

&&	execution(*	*..ClientServiceImpl.update(..))	

1. Matches	public	update	methods	of	the	2	classes,	whatever	the	arguments	

2. Matches	any	update	methods	of	the	2	classes,	whatever	the	arguments	and	method	visibility	

3. Matches	any	update	methods	of	the	2	classes,	with	one	more	arguments	and	whatever	

method	visibility	

4. No	joint	point	is	defined	

Question	20	

Using	the	Spring	AOP	framework,	what	is	the	visibility	of	the	method	matches	by	the	following	join	

point?	

@Pointcut("execution(* *(..))")
private void anyOperation() {};
	

1. All	methods,	whereas	their	visibility	

2. All	methods,	except	private	method	

3. Protected	and	public	methods	

4. Public	methods	

	
Question	21	

What	are	the	2	correct	statements	about	AOP	proxy?	

1. AOP	proxies	are	created	by	Spring	in	order	to	implement	the	aspect	contracts	

2. AOP	proxies	are	always	created	with	a	JDK	dynamic	proxy	

3. Only	classes	that	implements	a	least	one	interface	could	be	proxied	

4. All	methods	could	be	proxied	

5. Proxies	are	created	by	a	BeanPostProcessor	

	

Question	22	

What	is	an	after	throwing	advice?	Select	a	unique	answer.	

1. Advice	that	could	throw	an	exception	

2. Advice	to	be	executed	if	a	method	exits	by	throwing	an	exception	

3. Advice	that	executes	before	a	join	point	

4. Spring	does	not	provide	this	type	of	advice	

	

Question	23	

What	is	an	after	returning	advice?	Select	a	unique	answer.	

1. Advice	to	be	executed	regardless	of	the	means	by	which	a	join	point	exits	

2. Advice	that	surrounds	a	method	invocation	and	can	perform	custom	behavior	before	and	

after	the	method	invocation	

3. Advice	to	be	executed	before	method	invocation	

4. Advice	to	be	executed	after	a	join	point	completes	without	throwing	an	exception	

	
Question	24	

What	is	an	advice?	Select	a	unique	answer.	

1. An	action	taken	by	an	aspect	at	a	particular	join	point	

2. A	point	during	the	execution	of	a	program	

3. An	aspect	and	a	pointcut	

4. A	predicate	that	matches	join	points	

	
Question	25	

What	is	a	pointcut?	Select	the	single	answer.	

1. Code	to	execute	at	a	join	point	

2. An	expression	to	identify	joinpoints	

3. An	advice	and	a	jointpoint	

4. None	of	the	above	

	
Question	26	

Select	method’s	signatures	that	match	with	the	following	pointcut:	

execution(*	com.test.service..*.*(*))	

1. void	com.test.service.MyServiceImpl#transfert(Money	amount)	

2. void	com.test.service.MyServiceImpl#transfert(Account	account,	Money	amount)	

3. void	com.test.service.account.MyServiceImpl#transfert(Money	amount)	

4. void	com.test.service.account.MyServiceImpl#transfert(Account	account,	Money	amount)	

5. None	of	the	above	

	

Question	27	

What	are	the	unique	right	answer	about	Spring	AOP	support?	

1. An	advice	could	proxied	a	constructor’s	class	
2. A	pointcut	could	select	methods	that	have	a	custom	annotation	
3. Static	initialization	code	could	be	targeted	by	a	point	cut	
4. Combination	of	pointcuts	by	&&,	||	and	the	!	operators		is	not	supported	

	

Question	28	

Using	the	Spring	AOP	framework,	what	are	the	joinpoint	methods	of	the	following	pointcut	

expressions?	

execution(public	*	*(..))	

1. The	execution	of	all	public	method	

2. The	execution	of	all	public	method	returning	a	value	

3. The	execution	of	all	public	method	having	at	least	one	parameter	

4. The	execution	of	all	public	method	in	class	belonging	to	the	default	java	package	

Data	Access	
	

Question	29	

Why	is	it	a	best	practice	to	mark	transaction	as	read-only	when	code	does	not	write	anything	to	the	

database?	Select	one	or	more	answers.	

1. It	is	mandatory	for	using	Spring	exception	translation	mechanism	

2. May	be	improve	performance	when	using	Hibernate	

3. Spring	optimizes	its	transaction	interceptor	

4. Provides	safeguards	with	Oracle	and	some	other	databases	

Question	30	

What	data	access	technology	is	supported	by	the	Spring	framework?	Select	one	or	more	answers.	

1. JDBC	

2. NoSQL	

3. Hibernate	

4. JPA	

Question	31	

What	is	not	provided	by	the	JdbcTemplate?	Select	a	unique	answer.	

1. Data	source	access	

2. Open/close	data	source	connection	

3. JDBC	exception	wrapping	into	DataAccess	Exception	

4. JDBC	statement	execution	

Question	32	

Using	JdbcTemplate,	what	is	the	Spring	provided	class	you	will	use	for	result	set	parsing	and	merging	

rows	into	a	single	object?	Select	a	unique	answer.	

1. RowMapper	

2. RowCallbackHandler		

3. ResultSetExtractor	

4. ResultSetMapper	

	
Question	33	

What	configuration	is	supported	by	the	LocalSessionFactoryBean	which	supports	Hibernate	4	or	

higher?	Select	a	unique	answer.	

1. Listing	entity	classes	annotated	with	@Entity	

2. Scanning	a	package	to	detect	annotated	entity	classes	(with	@Entity)	

3. Listing	hibernate	XML	mapping	configuration	file	(.hbm.xml)	

4. All	above	

Transaction	
	
Question	34	

What	is/are	incorrect	statements	about	XML	declaration	of	the	transaction	manager	bean?	Select	

one	or	more	answers.	

1. The	tx	namespace	provides	JTA	transaction	manager	declaration	shortcut	syntax	

2. Id	of	the	bean	has	to	be	transactionManager	
3. Depending	the	application	persistence	technology,	the	HibernateTransactionManager	or	the	

DataSourceTransactionManager	could	be	used	as	bean	class	

4. Default	transaction	timeout	could	be	given	

	

Question	35	

Assuming	@Transactional	annotation	support	is	enabled	and	the	transferMoney	method	is	called	

through	a	Spring	AOP	proxy,	what	is	the	behavior	of	the	following	code	sample?	

@Transactional(propagation=Propagation.REQUIRED)
public void transferMoney(Account src, Account target, double amount) {
 add(src, -amount);
 add(src, amount);
}

@Transactional(propagation=Propagation.REQUIRES_NEW)
public void add(Account account, Double amount) {
 // IMPLEMENTATION
}

1. The	add()	method	executes	code	in	a	new	transaction	

2. The	add()	method	uses	the	transaction	of	the	transferMoney()	method	

3. When	calling	the	add()	method,	an	exception	is	thrown	

4. Other	behavior	

	

Question	36	

Does	Spring	provide	programmatic	transaction	management?	Select	a	unique	answer.	

1. Yes	with	the	TransactionTemplate	class	

2. Yes	with	the	TransactionService	class	

3. Yes	using	the	@Transactional	bean	post	processor	

4. No	

Question	37	

What	is	the	transaction	behavior	of	the	PROPAGATION_REQUIRES_NEW	mode?	Select	a	unique	

answer.	

1. If	a	transaction	exists,	the	current	method	should	run	within	this	transaction.	Otherwise,	it	

should	start	a	new	transaction	and	run	within	its	own	transaction.		

2. If	a	transaction	is	in	progress,	the	current	method	should	run	within	the	nested	transaction	

of	the	existing	transaction.	Otherwise,	a	new	transaction	has	to	be	started	and	run	within	its	

own	transaction.	

3. The	current	method	must	start	a	new	transaction	and	run	within	its	own	transaction.	If	there	

is	an	existing	transaction	in	progress,	it	is	suspended.	

4. None	of	the	above	

	

Question	38	

What	is	the	default	rollback	policy	in	transaction	management?	

1. Rollback	for	any	Exception	

2. Rollback	for	RuntimeException	

3. Rollback	for	checked	exceptions	

4. Always	commit	

	
Sping	@MVC	
	

Question	39	

What	could	not	return	a	Spring	MVC	controller?	Select	a	single	answer.	

1. An	absolute	path	to	the	view	

2. A	logical	view	name	

3. A	new	JstlView	

4. void	

5. null	value	

	

Question	40	

Where	do	you	cannot	declare	Spring	MVC	controller?	Select	one	or	more	answers.	

1. In	a	Spring	application	context	XML	configuration	file	

2. Into	the	web.xml	file	of	the	web	application	

3. Into	the	java	code	by	using	annotations	

4. Into	the	JSP	pages	

	
Question	41	
	
What	is	the	easiest	method	to	write	a	unit	test?	

1. void displayAccount(HttpServletRequest req, HttpServletResponse resp)
 throws ServletException, IOException

2. void displayAccount(HttpServletRequest req, HttpSession Session)
 throws ServletException, IOException
	

3. @RequestMapping("/displayAccount")
 String displayAccount(@RequestParam("accountId") int id, Model model)

4. @RequestMapping("/displayAccount")
 String displayAccount(@PathVariable("accountId") int id, Model model)

	

Spring	Security	
	

Question	42	

How	could	you	secure	MVC	controller	with	Spring	Security?	Select	a	unique	answer.	

1. With	the	@Secured	annotation	

2. With	the	@RolesAllowed	annotation	

3. In	a	XML	security	configuration	file	

4. All	of	the	above	

5. None	of	the	above	

	

Question	43	

What	are	the	possible	mechanisms	provided	by	Spring	Security	to	store	user	details?	Select	one	or	

more	correct	answers.	

1. Database	

2. JAAS	

3. LDAP	

4. Properties	file	

	

Question	44	

What	is	right	about	Spring	Security	configuration	and	the	security	namespace?	Select	one	or	more	

correct	answers.	

1. The	access	attribute	of	the	intercept-url	tag	support	both	EL	and	constants	together.	

2. The	patterns	declared	into	the	intercept-url	tag	are	analyzed	from	up	to	bottom.	Winning	is	

the	first	that	matches.	

3. The	patterns	declared	into	the	intercept-url	tag	use	by	default	the	java	regex	syntax.	

4. Security	rules	may	apply	depending	request	parameter	

	
REST	
	
Question	45	
	
Which	of	the	following	is	true	regarding	the	below	Spring	controller?	

@RestController
public class OwnerController {

 @RequestMapping(value = "/owner/{ownerId}", method = RequestMethod.POST)
 @ResponseBody
 public Owner findOwner(@PathVariable("ownerId") int ownerId) {
 return new Owner();
 }
}

1. RequestMethod.GET	method	is	more	accurate	than	POST	
2. @PathVariable	should	be	replaced	with	the	@PathParam	annotation	
3. Returning	the	201	HTTP	status	code	is	better	
4. @ResponseBody	could	be	removed	

Question	46	

Which	of	the	following	statements	is	true	regarding	the	@ResponseStatus	annotation?	

1. @ResponseStatus	is	detected	on	nested	exceptions	
2. The	ExceptionHandlerExceptionResolver	uses	the	@ResponseStatus	annotation	to	map	

exception	to	HTTP	status	code	
3. A	controller	handler	is	annotated	with	the	@ResponseStatus,	the	response	status	set	by	

RedirectView	takes	precedence	over	the	annotation	value.	
4. The	@ResponseStatus	annotation	can	go	on	a	@RequestMapping	method	or	a	@RestController	

class	or	a	business	exception	class.	

	
Microservice	
	
Question	47	

Compared	to	monolithic	application,	what	are	the	advantage(s)	of	microservices?	

1. The	base	code	is	easy	to	understand	
2. Imply	a	simple	distributed	system	
3. Easier	deployment	

4. Fine-grained	scaling	

	

Question	48	

What	Spring	Cloud	provides	in	a	microservices	architecture?	

1. A	Service	Discovery	implementation	
2. A	server	for	externalized	configuration	
3. A	Dockerfile	building	an	image	that	runs	any	Spring	Boot	application	
4. Netflix	OSS	integration	for	Spring	Boot	

	

Spring	Boot	
	
Question	49	

What	provides	Spring	Boot?	

1. Support	for	Jetty	and	Undertow	as	embedded	containers	
2. Java	code	generation		
3. Auto-configuration	of	the	Spring	Framework	and	third	libraries	
4. Convenient	dependency	descriptors	to	load	transitive	dependencies	
5. Support	both	Java-based	and	YAML	for	Spring	application	context	configuration		

	

Question	50	

What	is	the	name	of	the	default	environment	configuration	file	of	Spring	Boot?	

1. configuration.spring	
2. configuration.yml	
3. configuration.xml	
4. application.properties	
5. application.json	

	

	 	

Response	 	

Container	
	
Question	1	

Answer	2	is	correct.	Those	beans	are	anonymous	because	no	id	is	supplied	explicitly.	Thus	Spring	

container	generates	a	unique	id	for	that	bean.	It	uses	the	fully	qualified	class	name	and	appends	a	

number	to	them.	However,	if	you	want	to	refer	to	that	bean	by	name,	through	the	use	of	the	ref	

element	you	must	provide	a	name	(see	Naming	Beans	section	of	the	Spring	reference	manual).	To	be	

correct,	the	2nd	bean	has	to	declare	a	jpaDao	id	attribute	in	order	to	be	reference	by	the	

repository	property	of	the	first	bean.	

Question	2	

Answers	1	and	4	are	correct.		

1. To	set	bean’s	property	with	the	p:propertyName	shortcut,	you	have	to	declare	the	

http://www.springframework.org/schema/p	in	your	xml	configuration	file.	No	xsd	is	

required.		

2. The	bean	is	anonymous.	Spring	generates	a	unique	id:	
com.spring.service.BankServiceImpl#0	

3. To	reference	another	bean	with	the	p	namespace,	you	have	to	use	the	p:propertyName-ref	

syntax	

4. Due	to	the	above	explanation,	NationalBank	is	not	a	bean	reference,	so	it	is	a	simple	String	

and	thus	a	scalar	value.	

Question	3	

Correct	answer	is	3.		

The	@Bean	annotation	defines	a	String	bean	with	the	id	"clientRepository".	JpaClientRepository	is	

the	implementation	class	of	the	bean.	The	data	source	is	injected	and	is	not	declared	in	this	class.	

	

Question	4	

The	only	possible	answer	is	the	number	3.	

1. The	<util:constant	static-field="constant	name"/>	tag	enables	to	reference	a	Java	constant	or	

enumeration	into	a	spring	configuration	file	

2. ConstantPlaceholderConfigurer	does	not	exist.	You	may	think	about	the	

PropertyPlaceholderConfigurer,	which	is	a	BeanFactory	post	processor.	

3. The	<context:property-placeholder	location="file:/myApp.properties"	/>	tag	activates	the	

replacement	of	${...}	placeholders,	resolved	against	the	specified	properties	file.		

4. The	c:	namespace	is	for	simplifying	constructor	syntax	(since	Spring	3.1)	and	don’t	provide	

such	feature.	

Question	5	

The	statements	number	5	is	right.	

1. You	may	auto-wiring	properties	by	constructor,	setter	or	properties	in	the	same	bean	

2. The	<constructor-arg>	tag	helps	to	instanciated	a	bean	without	default	or	no-args	

constructor		

3. The	<constructor-arg>	tag	could	take	type	and	index	to	reduce	ambiguity,	but	not	name	

which	requires	debug	symbols.	

Question	6	
	
Answers	1,	3,	4	and	5	are	rights.	

1. The	@PostConstruct,	@PreDestroy	and	@Resource	annotations	are	defined	in	the	JSR-250	

"Common	Annotations"	

2. They	belong	to	the	javax.annotation	package.	You	should	add	an	external	jar	to	use	them	in	

Java	5.	Java	6	and	above	integrates	them.	

3. The	<context:component-scan>	automatically	detects	stereotyped	classes	and	turns	on	the	

<context:annotation-config>	

4. The	<context:annotation-config	>	activates	the	Spring	infrastructure	for	various	annotations	

to	be	detected	in	bean	classes,	including	the	JSR-250	annotations	

5. The	CommonAnnotationBeanPostProcessor	supports	common	Java	annotations	out	of	the	

box,	in	particular	the	JSR-250	annotations.		

Question	7	

Correct	answer	in	the	number	3.	

1. In	a	web	application,	the	ContextLoaderListener	is	in	charge	to	create	an	

WebApplicationContext.	

2. In	an	integration	test	based	on	Spring,	the	SpringJUnit4ClassRunner	creates	the	application	

context	for	you.	The	@ContextConfiguration	annotation	allows	to	specified	application	

context	configuration	files.	

3. In	a	main	method,	you	have	to	instantiate	a	class	implementing	the	ApplicationContext	

interface	(examples:	ClassPathXmlApplicationContext	or	FileSystemXmlApplicationContext)	

Question	8	

Answer	number	4	is	right.	

1. When using the ClassPathXmlApplicationContext, the	classpath:	prefix	is	default	one	

so	you	could	omit	it	

2. In	a	Spring	location	resource,	package	separator	is	a	slash	and	not	a	dot.	Thus	the	

com/example/myapp/config.xml	syntax	has	to	be	used.	

3. ClassPathXmlApplicationContext	starts	looking	from	root	of	the	classpath	regardless	of	

whether	specify	"/"	

	

Question	9		

Answers	number	3	and	4	are	valid.		

1. The	@Autowired	annotation	has	no	name	property,	just	a	required	one.	

2. For	autowiring,	the	@Inject	or	the	@Autowired	or	the	@Resource	annotations	are	

mandatory.			

3. The	@Qualifier("name")	annotation	completes	the	use	of	the	@Autowired	annotation	by	

specifying	the	name	of	the	bean	to	inject	

4. When	2	beans	are	eligible	to	auto-injection,	Spring	uses	the	field	name	to	select	the	

appropriate	one.	

	
Question	10	

Answers	number	1	and	4	are	valid.	

1. With	modern	mock	API	like	Mockito	or	EasyMock,	interfaces	are	not	mandatory	for	mocking	

or	stubbing	the	service.	But	using	interface	remains	easier	when	you	have	to	manually	mock	

the	service	in	unit	test.	

2. Auto-injection	is	possible	with	class.	Spring	uses	CGLIB.	

3. Dependency	checking	is	an	advantage	of	dependencies	injection.	

4. The	Inversion	of	Control	pattern	requires	an	interface	to	separate	2	classes.	This	pattern	

provides	code	more	flexible,	unit	testable,	loosely	coupled	and	maintainable.	

Question	11	

Correct	answers:	4	

1. In	the	bean	lifecycle,	method	annotated	with	@PostConstruct	is	called	after	the	properties	

set	step	and	the	BeanPostProcessors#postProcessBeforeInitialization	step	

2. Destroy	methods	of	prototype	beans	are	never	called		

3. In	the	bean	lifecycle,	the	afterPropertiesSet	callback	method	of	the	InitializingBean	is	called	

after	the	method	annotated	with	the	@PostConstruct	annotation	and	before	the	init-method	

declared	in	the	XML	configuration	file.	

4. In	the	bean	lifecycle,	the	method	annotated	with	the	@PreDestroy	annotation	is	called	

before	the	destroy	callback	of	the	DisposableBean	interface	and	before	the	destroy-method	

declared	in	the	XML	configuration	file.	

Question	12	

Correct	answers	are	1	and	2.	

1. In	order	to	be	taken	into	account	by	Spring,	the	ApplicationConfig	class	has	to	be	annotated	

with	the	@Configuration	annotation	

2. Default	or	no-arg	constructor	is	mandatory.	Here,	the	provided	constructor	with	a	

dataSource	parameter	is	not	taken	into	account	

3. The	bean	name	is	clientRepository.	The	name	property	of	the	@Bean	annotation	is	specified	

thus	the	method	name	jpaClientRepository	is	ignored.	

4. Singleton	is	the	scope	of	the	jpaClientRepository	bean.		

	
Question	13	

Correct	answers	are	3	and	4	

1. Use	<tx:annotation-driven	/>	to	enable	@Transactional	annotation	scanning	

2. Use	<aop:aspectj-autoproxy	/>	to	enable	detection	of	@Aspect	bean	

3. Turns	on	<context:annotation-config	/>	or	<context:component-scan	/>	to	enable	

@Autowiring	annotation	

4. Turns	on	<context:component-scan	/>	to	enable	@Component	annotation	scanning		

Test	
	

Question	14	

The	only	correct	answer	is	number	3.	

1. The	Spring	context	is	cached	across	tests	unless	you	use	the	@DirtiesContext	annotation	

2. With	the	Spring	test	module,	dependency	injection	is	available	in	test	case.	So	you	may	auto-

wired	the	bean	you	are	testing.	

3. By	default,	a	@ContextConfiguration	annotated	class	inherits	the	Spring	context	

configuration	file	locations	defined	by	an	annotated	superclass.	The	inheritLocations	of	this	

attribute	allows	to	change	this	default	behavior.	

4. If	no	context	configuration	file	is	provided	to	the	@ContextConfiguration	annotation,	Spring	

uses	a	file	convention	naming.	It	tries	to	load	a	file	named	with	the	test	class	name	and	

suffices	by	"-context.xml"	(i.e.	MyDaoTest-context.xml)		

	

Question	15	

Correct	answers	are	1,	3	and	4.	

What	are	the	main	advantage(s)	for	using	Spring	when	writing	integration	tests?			

1. More	than	testing	multiple	classes	together,	integration	test	may	allow	to	test	your	spring	

configuration	file	and/or	to	reuse	it.	

2. Mocking	or	stubbing	is	more	frequent	in	unit	tests	than	in	integration	tests.	And	Spring	does	

not	provide	any	implementation	or	abstraction	of	mock	framework.	

3. The	framework	may	create	and	roll	back	a	transaction	for	each	test	method.	Default	rollback	

policy	could	be	changed	by	using	the	@TransactionConfiguration	annotation.		And	default	

mode	could	be	overridden	by	the	@Rollback	annotation.	

4. DependencyInjectionTestExecutionListener	provides	support	for	dependency	injection	and	

initialization	of	test	instances.	

Question	16	

The	correct	answer	is	the	number	3.	

What	are	the	main	advantage(s)	for	using	Spring	when	writing	unit	tests?			

1. You	don’t	need	Spring	container	to	write	unit	test	

2. Refer	to	the	answer	number	1.	

3. The	org.springframework.mock	package	provides	mock	classes	like	MockHttpSession	or	

MockHttpContext.	They	could	be	helpful	for	unit	test	in	the	presentation	layer	and	when	you	

don’t	use	any	mock	framework	such	as	Mockity	or	EasyMock.	

Question	17	

Answer	5	is	correct.	

What	is	right	about	the	spring	test	module?	

1. The	spring	test	module	does	not	provide	an	abstraction	layer	for	open	source	mock	

frameworks	like	EasyMock,	JMock	or	Mockito	

2. The	@Mock	annotations	comes	from	the	Mockito	framework	

3. The	spring	test	module	does	not	provide	mechanism	to	generate	mock	objects	at	runtime	

Question	18	

Correct	statements	are	number	1	and	4.	

1. The	transactionManager	property	of	the	@TransactionConfiguration	annotation	enables	to	

set	the	bean	name	of	the	PlatformTransactionManager	that	is	to	be	used	to	drive	

transactions.	

2. Method	annotated	with	@Before	is	executed	inside	the	test’s	transaction.	You	have	to	use	

the	@BeforeTransaction	to	execute	code	outside	the	test’s	transaction.	

3. The	REQUIRES_NEW	propagation	suspends	the	current	test’s	transaction	then	creates	a	new	

transaction	that	will	be	used	to	execute	the	service.	A	commit	at	the	service	level	could	not	

be	changed	by	the	test.	

4. The	transaction	for	the	annotated	method	should	be	rolled	back	after	the	method	has	

completed.	

AOP	
	
Question	19	

The	correct	answer	is	the	number	4.	

	

Considering	2	classes	AccountServiceImpl	and	ClientServiceImpl.	Any	of	these	2	classes	inherits	from	

each	other.		What	is	the	result	of	the	pointcut	expressions?	

					execution(*	*..AccountServiceImpl.update(..))		

&&	execution(*	*..ClientServiceImpl.update(..))	

Poincut	expression	could	not	satisfied	both	first	and	second	execution	point.	Do	not	confuse	the	&&	

operator	and	||	operator.	

	

Question	20	

Correct	answer	is	the	number	4.	

Due	to	the	proxy-based	nature	of	Spring's	AOP	framework,	protected	methods	are	by	definition	not	

intercepted,	neither	for	JDK	proxie	nor	for	CGLIB	proxies.		As	a	consequence,	any	given	pointcut	will	

be	matched	against	public	methods	only!	

To	intercept	private	and	protected	methods,	AspecJ	weaving	should	be	used	instead	of	the	Spring’s	

proxy-bases	AOP	framework.	

	

Question	21	

The	2	correct	statements	are	1	and	5.	

What	are	the	2	correct	statements	about	AOP	proxy.	

1. An	object	created	by	the	AOP	framework	in	order	to	implement	the	aspect	contracts	

2. If	the	target	object	does	not	implement	any	interfaces,	then	a	CGLIB	proxy	will	be	created.	

You	could	also	use	CGLIB	proxy	instead	of	JDK	dynamic	proxy	

3. If	the	target	object	does	not	implement	any	interfaces,	then	a	CGLIB	proxy	will	be	created.	

4. When	CGLIB	proxy	is	used,	final	methods	cannot	be	advised,	as	they	cannot	be	overridden.	

5. AOP	Proxies	are	created	by	the	AbstractAutoProxyCreator#postProcessAfterInitialization	

method.		

Question	22	

The	answer	number	2	is	correct.	

1. A	before	advice	could	throw	an	exception	

2. An	after	throwing	advice	is	executed	if	a	method	exits	by	throwing	an	exception	

3. An	advice	that	executes	before	a	join	point	is	named	a	before	advice	

4. Spring	supports	after	throwing	advices		

	
Question	23	

Correct	answer:	4	

1. This	is	an	after	(finally)	advice	

2. This	is	an	around	advice	

3. This	is	a	before	advice	

4. True	

Question	24	

Correct	answer:	1	

1. Definition	of	an	advice	

2. Definition	of	a	joint	point	

3. Represents	nothing	

4. Definition	of	a	point	cut	

	
Question	25	

Correct	answer:	2	

1. Definition	of	an	advice	

2. Definition	of	a	pointcut	

3. Represents	nothing	

	

Question	26	

Correct	answers:		1,	3	

Select	methods	that	match	with	the	following	pointcut:	

execution(*	com.test.service..*.*(*))	

1. True	

2. The	pattern	(*)	matches	a	method	taking	one	parameter	of	any	type	

3. The	com.test.service.account	sub-package	matches	the	pointcut	

4. False	for	the	same	reason	as	answer	number	2.	

	

Question	27	

Correct	answers:	2	

1. Interception	of	constructors	requires	the	use	of	Spring-driven	native	AspectJ	weaving	instead	

of	Spring's	proxy-based	AOP	framework	

2. The	@annotation	designator	enables	to	select	methods	that	are	annotated	by	a	given	

annotation	

3. The	staticinitialization	AspectJ	designator	is	not	supported	by	Spring	AOP	

4. Pointcut	expressions	can	be	combined	using	&&,	||	and	!	

	

Question	28	

Correct	answers:	1	

1. The	execution	of	all	public	method	

2. The	*	return	type	pattern	indicates	any	return	value	or	void		

3. The	(..)	param	pattern	indicates	0,	1	or	many	parameters		

4. No	package	name	is	specified.	So	classes	of	any	package	could	match.	

	
Data	Access	
	

Question	29	

Correct	answers:	2,	4	

1. Spring	exception	translation	mechanism	has	nothing	to	do	with	read-only	transaction	

2. Read-only	transaction	prevents	Hibernate	from	flushing	its	session.	Hibernate	does	not	apply	

dirty	checking	thus	it	increases	its	performance.	

3. No	

4. When	JSBC	transaction	is	marked	as	read-only,	Oracle	only	accepts	SELECT	SQL	statements.	

	

Question	30	

Correct	answers:	1,	3,	4	

1. JDBC	is	supported:	JdbcTemplate,	JDBCException	wrapper	…	

2. Some	NoSQL	databases	are	supports	through	the	Spring	Data	project	

3. Hibernate	is	supported:	HibernateTemplate,	AnnotationSessionFactoryBean	…	

4. JPA	is	supported:	LocalEntityManagerFactoryBean,	@PersistenceContext	annotation	support	

Question	31	

Correct	answer:	1	

1. A	JdbcTemplate	requires	a	DataSource	as	input	parameters	

2. JdbcTemplate	uses	the	provided	datasource	to	open	then	close	a	JDBC	connection	

3. Callback	methods	of	the	JdbcTemplate	throws	and	SQL	Exception	than	Spring	converts	into	a	

DataAccessException	

4. For	example,	the	queryForInt	method	executes	an	SQL	statement	

	

Question	32	

Correct	answer:	3	

1. RowMapper:	result	set	parsing	when	needed	to	map	each	row	into	a	custom	object	

2. RowCallbackHandler:	result	set	parsing	without	returning	a	result	to	the	JdbcTemplate	caller	

3. ResultSetExtractor:	for	result	set	parsing	and	merging	rows	into	a	single	object	

4. ResultSetMapper:	this	class	does	not	exist	

	

Question	33	

Correct	answer:	4	

1. True	using	the	annotedClasses	property.	For	Hibernate	3.x,	this	property	is	available	from	the	

AnnotationSessionFactoryBean	child	class.	

2. True	using	the	packagesToScan	property.	For	Hibernate	3.x,	this	property	is	available	from	

the	AnnotationSessionFactoryBean	child	class.	

3. True	using	the	mappingLocations	property.	

4. True	

Transaction	
	
Question	34	

Correct	answer:	2	

1. <tx:jta-transaction-manager	/>	

2. Id	of	the	transaction	manager	bean	could	be	customized	(ie.	txManager)	
3. DataSourceTransactionManager	is	a	transaction	manager	for	a	JDBC	data	source.	

HibernateTransactionManager	may	be	used	to	manage	transaction	with	Hibernate.	

4. The	AbstractPlatformTransactionManager	has	a	defaultTimeout	property	that	could	be	

customized	

Question	35	

Correct	answer:	2	

In	proxy	mode,	only	external	method	calls	coming	in	through	the	proxy	are	intercepted.	In	the	code	

snippet,	the	add()	method	is	self-invocated.	This	means	that,	the	@Transactional	annotation	of	the	

add()	method	is	not	interpreted.	The	REQUIRES_NEW	propagation	level	is	not	taken	into	account.	

To	summary,	when	the	transferMoney()	methods	calls	add()	method	directly,	the	transaction	

attributes	of	add()	method	are	not	used	

Question	36	

Correct	answer:	1	

1. The	TransactionTemplate	class	provides	an	execute(TransactionCallback)	method		

2. The	TransactionService	class	does	not	exists	

3. The	@Transactional	annotation	is	for	declarative	transaction	management	

	

Question	37	

Correct	answer:	3	

1. PROPAGATION_REQUIRED	

2. PROPAGATION_NESTED	

3. PROPAGATION_REQUIRES_NEW		

	

Question	38	

Correct	answer:	2	

1. False.	

2. True	

3. False	

4. False	

	
Sping	@MVC	
	

Question	39	

Correct	answer:	1	

1. Spring	does	not	allow	to	return	an	absolute	path	to	the	view	

2. Controller	could	return	a	String	that	matches	with	a	logical	view	name	

3. A	JstlView	with	the	.jsp	path	(i.e.	/WEB-INF/accountList.jsp)	

4. void	forward	to	the	default	view	

5. null	forward	to	the	default	view	

	

Question	40	

Correct	answer:	2,	4	

1. Spring	MVC	controllers	are	beans.	So	you	can	declare	them	into	a	Spring	application	context	

XML	configuration	file	that	could	be	loaded	by	the	DispatcherServlet.	

2. In	the	web.xml,	you	may	declarer	and	a	ContextLoaderListener	and	a	DispatcherServlet	that	

are	in	charge	to	load	XML	Spring	configuration	files.	But	you	cannot	declare	controllers	

directly	in	those	files.	

3. The	@Controller	annotation	may	be	used	to	annotated	Spring	MVC	Controller	beans	that	

handle	HTTP	requests.	

4. JSP	is	the	View	of	the	MVC	Pattern.	Thus	this	is	not	the	right	place	to	declare	any	controller.	

	

Question	41	
	
Correct	answer:	3	

1. HttpServletRequest	and	HttpServletResponse	have	to	be	mocked.	Id	of	the	account	to	display	
could	be	set	into	the	http	request	parameters.	
	

2. HttpServletRequest	and	HttpSession	have	to	be	mocked.	Id	of	the	account	to	display	could	be	
set	into	the	http	request	parameters.	
	

3. This	method	is	not	dependent	of	the	servlet	API.	Id	of	the	account	to	display	may	be	directly	
passed	through	the	call	stack.	Thus	test	methods	are	simplified.		

4. The	@PathVariable	annotation	has	to	be	bound	to	a	URI	template	variable.	This	is	not	the	
case.

	

Sping	Security	
	

Question	42	

Correct	answer:	4	

1. @Secured	annotation	is	a	Spring	Security	annotation	

2. @RolesAllowed	is	a	JSR-250	annotation	that	is	supported	by	Spring	Security	

3. Spring	Security	could	be	configured	in	a	XML	way	to	intercept	particular	URLs	

	

Question	43	

Correct	answer:	1,	2,	3	and	4	

	
Question	44	

Correct	answer:	2	

1. You	cannot	mix	EL	and	constant	in	the	same	configuration	file	

2. If	more	than	one	intercept-url	matches,	the	top	one	is	used	

3. Ant	pattern	is	used	by	default.	But	you	can	change	to	use	regular	expression.	

4. Security	rules	may	apply	to	request	URL,	request	method	(GET,	POST	…)	but	not	to	request	

parameters.	

	

REST	
	

Question	45	
	

Correct	answers:	1,	4	

1. Right:	the	HTTP	GET	method	is	used	read	(or	retrieve)	a	representation	of	a	resource.	This	is	
the	aim	of	the	the	findOwer	method.	Compared	to	the	POST	verb	that	is	most-often	used	to	
create	new	resources.	

2. Wrong:	the	@PathParam	annotation	has	the	same	purpose	than	the	@PathVariable	
annotation.	But	it	belongs	to	JAX-RS.	You	cannot	use	it	in	Spring	MVC	but	for	instance	in	
Apache	CXF	or	Jersey.	

3. Wrong:	the	201	HTTP	status	code	means	"Resource	created”.	It	follows	a	POST	command	this	
indicates	success.	

4. Right:	the	@RestController	annotation	marks	the	OwnerController	class	as	a	controller	
where	every	method	returns	a	domain	object	instead	of	a	view.	It’s	shorthand	for	
@Controller	and	@ResponseBody	rolled	together.	By	annotating	the	controller	class	with	
@RestController	annotation,	you	no	longer	need	to	add	@ResponseBody	to	all	the	request	
mapping	methods.	

Question	46	
	
Correct	answers:	1		

1. Right:	starting	from	Spring	Framework	4.2,	the	@ResponseStatus	annotation	is	detected	on	
nested	exceptions.	

2. Wrong:	this	is	the	job	of	the	ResponseStatusExceptionResolver	class	
3. Wrong:	this	is	the	opposite.	
4. Wrong:	@ResponseStatus	annotation	on	a	@RestController	class	is	not	supported	

	

Microservices	
	
Question	47	

Correct	answers:	1,	3,	4	

1. Pro:	a	micro-service	is	responsible	only	for	one	thing.	It	requires	less	code	than	a	monolith	
application	and	has	less	risk	of	changes.	A	new	developer	becomes	productive	quickly.	

2. Con:	distributed	system	are	harder	to	program.	Developers	have	to	consider	a	whole	host	
of	concerns	that	they	didn't	with	monolith:	backwards	compatibility,	fault	tolerance,	
latency,	asynchronicity,	several	message	formats	…	

3. Pro:	simple	services	are	easier	to	deploy,	and	since	they	are	autonomous,	are	less	likely	to	
cause	system	failures	when	they	go	wrong.	Starts	the	web	container	more	quickly,	so	the	
deployment	is	also	faster.	

4. Pro:	if	one	microservice	gets	a	lot	of	load	you	can	scale	just	it,	rather	than	the	entire	
application.	

	

	
Question	48	

Correct	answers:	2,	4	

1. Wrong:	Spring	Cloud	supports	Service	Discovery	solution	as	Eureka	and	Consul.	But	it	does	
not	implement	the	Service	Discovery	pattern.	

2. Right:	the	Spring	Cloud	Config	project	provides	both	a	server	and	a	client-side	support	for	
externalized	configuration	in	a	distributed	system.	

3. Wrong:	Spring	Cloud	does	not	support	Docker	out	of	the	box	
4. Right:	Spring	Cloud	supports	Netflix	implementation	of	common	microservices	patterns:	

Service	Discovery	(Eureka),	Circuit	Breaker	(Hystrix),	Intelligent	Routing	(Zuul)	and	Client	
Side	Load	Balancing	(Ribbon).	

	

Spring	Boot	
	
Question	49	

Correct	answers:	1,	3,	4	

1. Right:	using	Undertow	instead	of	Tomcat	is	very	similar	to	using	Jetty	instead	of	Tomcat.		
2. Wrong:	unlike	Spring	Roo,	one	of	the	main	goal	of	Spring	Boot	is	to	avoid	code	generation	
3. Right:	The	auto-configuration	part	of	Spring	Boot	can	be	achieved	thanks	to	the	conditionals	

annotations.	These	annotations	will	activate	different	configurations	depending	on	the	
classes,	beans,	properties	or	resources	that	are	detected	in	the	classpath.	

4. Right:	this	is	Starter	POMs	
5. Wrong:	Java-based	and	XML	are	supported.	Spring	Boot	favors	Java-based	configuration.	

Although	it	is	possible	to	call	SpringApplication.run()	with	an	XML	source	and	use	the	
@ImportResource	annotation	to	import	Spring	XML	configuration	file.	Instead	of	properties,	
YAML	is	supported	to	externalize	environment	variables.	

	

Question	50	

Correct	answer:	4	

By	default,	SpringApplication	will	load	properties	from	application.properties	files.	To	support	YAML,	

the	SnakeYAML	library	has	to	be	add	to	the	classpath.	

	

